

PAGE 1/6

TITLE	DOC No. RF	DOC No. RFD-20250410100-001		
800G OSFP PAM4 Active Copper Cable	REVISION: 01	AUTHORIZED BY: Hawk Rong		
	DATE: 2025.04.10	CLASSIFICATION: Active Copper Cable		

1. Features and Benefits

- Compatible with IEEE 802.3ck
- Supports aggregate data rates of 800Gbps(PAM4)
- Optimized construction to minimize insertion loss and crosstalk
- Pull-to-release slide latch design
- Straight and break out assembly configurations available
- Customized cable braid termination limits EMI radiation
- Customizable EEPROM mapping for cable signature
- 26AWG and 30AWG cable
- 3.3V Power supply
- Low power Consumes 0.15W per active channel, the total power of the cable is 2.5W
- EQ programmable
- Temperature Range: 0~ 70 °C

2. Product Applications

- Switches, servers and routers
- Data Center networks
- Storage area networks
- High performance computing
- Telecommunication and wireless infrastructure
- Medical diagnostics and networking
- Test and measurement equipment

3. Industry Standards

- 800G Ethernet(IEEE 802.3ck)
- InfiniBand NDR

4. Product Description

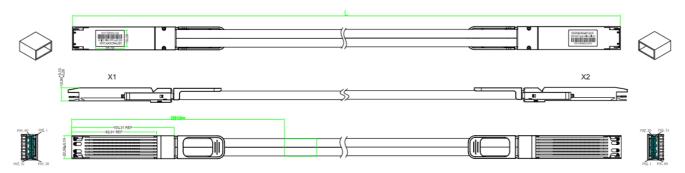
OSFP active copper cable assembly feature sixteen differential copper pairs, providing eight data transmission channels at speeds up to 100Gbps(PAM4) per channel, and meets 800G Ethernet and InfiniBand Next Data Rate(NDR) requirements. Available in 26AWG and 30AWG wire gauges, this 800G copper cable assembly features low insertion loss and low crosstalk.

OSFP active copper cable uses PAM4 signals for transmission, which doubles the rate. However, there are more stringent requirements for cable insertion loss. For detailed requirements, please see High Speed Characteristics.

4.1 Product Name

800G OSFP Active Copper Cable

Category	Bit Rate	Distance	Fiber Type	DDMI	Connector
800G OSFP	800G	1~5m	Copper	NO	NA



PAGE 2/6

TITLE	DOC No. RFD-20250410100-001		
800G OSFP PAM4 Active Copper Cable	REVISION: 01	AUTHORIZED BY: Hawk Rong	
	DATE: 2025.04.10	CLASSIFICATION: Active Copper Cable	

4.2 Mechanical Specifications

The connector is compatible with the SFF8024 specification.

(All Dimensions are ±0.20mm Unless Otherwise Specified, Unit: mm)

Length (m)	Cable AWG		
1	30		
2	30		
3	30		
4	30		
5	26		

PAGE 3/6

TITLE	DOC No. RFD-20250410300-001		
800G OSFP Active Copper Cable	REVISION: 01	AUTHORIZED BY: Hawk Rong	
	DATE: 2025.04.10	CLASSIFICATION: Active Copper Cable	

5. General Product Characteristics

OSFP ACC Specifications		
Number of Lanes	Tx8 & Rx8	
Channel Data Rate	106. 25Gbps	
Operating Temperature	0 to + 70°C	
Storage Temperature	-40 to + 85°C	
Supply Voltage	3.3 V nominal	
Electrical Interface	60pins edge connector	
Management Interface	Serial, I ² C	

6. High Speed Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Note
Differential Impedance	TDR	90	100	110	Ω	
Insertion loss	SDD21	-19.75			dB	At 26.56 GHz
				See 1	dB	At 0.05 to 26.56GHz
Differential Return Loss	SDD11 SDD22			See 2	dB	At 26.56 to 40 GHz
Common-mode to common- mode output return loss	SCC11 SCC22			-2	dB	At 0.2 to 40GHz
Differential to common Mode	SCD21-			-10	4D	At 0.05 to 12.89 GHz
Conversion Loss	SDD21			See3	dB	At 12.89 to 40 GHz

- 1. Reflection Coefficient given by equation SDD11(dB) <22-10(f/26.56), with f in GHz
- Reflection Coefficient given by equation SDD11(dB) <15-3(f/26.5), with f in GHz
 Reflection Coefficient given by equation SCD21-CDD21(dB) < 14-0.3108*f, with f in GHz

PAGE 4/6

TITLE	DOC No. RFD-20250410300-001		
800G OSFP Active Copper Cable	REVISION: 01	AUTHORIZED BY: Hawk Rong	
	DATE: 2025.04.10	CLASSIFICATION: Active Copper Cable	

7. Pin Assignment

Pin Description

Pin	Logic	Symbol	Description
1	_	GND	Ground
2	CML-I	Tx2p	Transmitter Non-Inverted Data Input
3	CML-I	Tx2n	Transmitter Inverted Data Input
4		GND	Ground
5	CML-I	Tx4p	Transmitter Non-Inverted Data Input
6	CML-I	Tx4n	Transmitter Inverted Data Input
7		GND	Ground
8	CML-I	Tx6p	Transmitter Non-Inverted Data Input
9	CML-I	Tx6n	Transmitter Inverted Data Input
10		GND	Ground
11	CML-I	Tx6p	Transmitter Non-Inverted Data Input
12	CML-I	Tx6n	Transmitter Inverted Data Input
13		GND	Ground
14	LVCMOS-	SCL	2-wire serial interface clock

PAGE 5/6

TITLE	DOC No. RFD-20250410300-001		
800G OSFP Active Copper Cable	REVISION: 01	AUTHORIZED BY: Hawk Rong	
	DATE: 2025.04.10	CLASSIFICATION: Active Copper Cable	

			ZUZU.UT. 10 Active Copper Cable		
	I/O				
15		VCC	+3.3V Power supply		
16		VCC	+3.3V Power supply		
17		LPWn/PRSn	Low-Power Mode / Module Present		
18		GND	Ground		
19	CML-O	Rx7n	Receiver Inverted Data Output		
20	CML-O	Rx7p	Receiver Non-Inverted Data Output		
21		GND	Ground		
22	CML-O	Rx5n	Receiver Inverted Data Output		
23	CML-O	Rx5p	Receiver Non-Inverted Data Output		
24		GND	Ground		
25	CML-O	Rx3n	Receiver Inverted Data Output		
26	CML-O	Rx3p	Receiver Non-Inverted Data Output		
27		GND	Ground		
28	CML-O	Rx1n	Receiver Inverted Data Output		
29	CML-O	Rx1p	Receiver Non-Inverted Data Output		
30		GND	Ground		
31		GND	Ground		
32	CML-O	Rx2p	Receiver Non-Inverted Data Output		
33	CML-O	Rx2n	Receiver Inverted Data Output		
34		GND	Ground		
35	CML-O	Rx4p	Receiver Non-Inverted Data Output		
36	CML-O	Rx4n	Receiver Inverted Data Output		
37	<u> </u>	GND	Ground		
38	CML-O	Rx6p	Receiver Non-Inverted Data Output		
39	CML-O	Rx6n	Receiver Inverted Data Output		
40		GND	Ground		
41	CML-O	Rx8p	Receiver Non-Inverted Data Output		
42	CML-O	Rx8n	Receiver Inverted Data Output		
43		GND	Ground		
44		INT/RSTn	Module Interrupt / Module Reset		
45		VCC	+3.3V Power supply		
46		VCC	+3.3V Power supply		
47	LVCMOS-	SDA			
- 10	I/O		2-wire serial interface data		
48		GND	Ground		
49	CML-I	Tx7n	Transmitter Inverted Data		
50	CML-I	Tx7p	Input Transmitter Non-Inverted Data Input		
51	ONAL I	GND	Ground Transposition leverted Date		
52	CML-I	Tx5n	Transmitter Inverted Data		
53	CML-I	Tx5p	Input Transmitter Non-Inverted Data Input		
54 55	CN41 I	GND	Ground Transmitter Inverted Data		
55 56	CML-I	Tx3n			
56	CML-I	Tx3p	Input Transmitter Non-Inverted Data Input		

PAGE 6/6

TITLE	DOC No. RFD-20250410300-001		
800G OSFP Active Copper Cable	REVISION: 01	AUTHORIZED BY: Hawk Rong	
	DATE: 2025.04.10	CLASSIFICATION: Active Copper Cable	

57		GND	Ground
58	CML-I	Tx1n	Transmitter Inverted Data
59	CML-I	Tx1p	Input Transmitter Non-Inverted Data Input
60		GND	Ground

8. Regulatory Compliance

Feature	Test Method	Performance	
Electrostatic Discharge (ESD) to the Electrical Pins	MIL-STD-883C Method 3015.7	Class 1(>2000 Volts)	
Electromagnetic	FCC Class B	Compliant with Standards	
Interference(EMI)	CENELEC EN55022 Class B		
	CISPR22 ITE Class B		
RF Immunity(RFI)	IEC61000-4-3	Typically Show no Measurable Effect from a 10V/m Field Swept from 80 to 1000MHz	
RoHS Compliance	RoHS Directive 2011/65/EU and it's Amendment Directives (EU) 2015/863	RoHS (EU) 2015/863 compliant	
REACH Compliance	REACH Regulation (EC) No 1907/2006	REACH (EC) No 1907/2006 compliant	

9. Modification History

Rev.	Comments	Date	Originator	Approval
01	Initial	2025.04.10	Hawk Rong	Mike Sun